Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 102: 129666, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382679

RESUMO

Because tuberculosis is still a major health threat worldwide, identification of new drug targets is urgently needed. In this study, we considered type B ribose-5-phosphate isomerase from Mycobacterium tuberculosis as a potential target, and addressed known problems of previous inhibitors in terms of their sensitivity to hydrolysis catalyzed by phosphatase enzymes, which impaired their potential use as drugs. To this end, we synthesized six novel phosphomimetic compounds designed to be hydrolytically stable analogs of the substrate ribose 5-phosphate and the best known inhibitor 5-phospho-d-ribonate. The phosphate function was replaced by phosphonomethyl, sulfate, sulfonomethyl, or malonate groups. Inhibition was evaluated on type A and type B ribose-5-phosphate isomerases, and stability towards hydrolysis using alkaline phosphatase and veal serum was assessed. One of the phosphomimetic analogs, 5-deoxy-5-phosphonomethyl-d-ribonate, emerged as the first strong and specific inhibitor of the M. tuberculosis enzyme that is resistant to hydrolysis.

2.
Bioorg Med Chem ; 25(3): 897-911, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28038943

RESUMO

Type I signal peptidases are potential targets for the development of new antibacterial agents. Here we report finding potent inhibitors of E. coli type I signal peptidase (LepB), by optimizing a previously reported hit compound, decanoyl-PTANA-CHO, through modifications at the N- and C-termini. Good improvements of inhibitory potency were obtained, with IC50s in the low nanomolar range. The best inhibitors also showed good antimicrobial activity, with MICs in the low µg/mL range for several bacterial species. The selection of resistant mutants provided strong support for LepB as the target of these compounds. The cytotoxicity and hemolytic profiles of these compounds are not optimal but the finding that minor structural changes cause the large effects on these properties suggests that there is potential for optimization in future studies.


Assuntos
Desenho de Fármacos , Escherichia coli/enzimologia , Proteínas de Membrana/antagonistas & inibidores , Oligopeptídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade
3.
ChemistryOpen ; 4(3): 342-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26246997

RESUMO

This is the first report of 5-styryl-oxathiazol-2-ones as inhibitors of the Mycobacterium tuberculosis (Mtb) proteasome. As part of the study, the structure-activity relationship of oxathiazolones as Mtb proteasome inhibitors has been investigated. Furthermore, the prepared compounds displayed a good selectivity profile for Mtb compared to the human proteasome. The 5-styryl-oxathiazol-2-one inhibitors identified showed little activity against replicating Mtb, but were rapidly bactericidal against nonreplicating bacteria. (E)-5-(4-Chlorostyryl)-1,3,4-oxathiazol-2-one) was most effective, reducing the colony-forming units (CFU)/mL below the detection limit in only seven days at all concentrations tested. The results suggest that this new class of Mtb proteasome inhibitors has the potential to be further developed into novel antitubercular agents for synergistic combination therapies with existing drugs.

4.
Structure ; 21(6): 986-96, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23665168

RESUMO

Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinases (DYRKs) play key roles in brain development, regulation of splicing, and apoptosis, and are potential drug targets for neurodegenerative diseases and cancer. We present crystal structures of one representative member of each DYRK subfamily: DYRK1A with an ATP-mimetic inhibitor and consensus peptide, and DYRK2 including NAPA and DH (DYRK homology) box regions. The current activation model suggests that DYRKs are Ser/Thr kinases that only autophosphorylate the second tyrosine of the activation loop YxY motif during protein translation. The structures explain the roles of this tyrosine and of the DH box in DYRK activation and provide a structural model for DYRK substrate recognition. Phosphorylation of a library of naturally occurring peptides identified substrate motifs that lack proline in the P+1 position, suggesting that DYRK1A is not a strictly proline-directed kinase. Our data also show that DYRK1A wild-type and Y321F mutant retain tyrosine autophosphorylation activity.


Assuntos
Síndrome de Down/enzimologia , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Sequência de Aminoácidos , Domínio Catalítico , Ativação Enzimática , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Serina/metabolismo , Especificidade por Substrato , Treonina/metabolismo , Quinases Dyrk
5.
Biochem J ; 433(2): 303-11, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21029046

RESUMO

Human GLRX5 (glutaredoxin 5) is an evolutionarily conserved thiol-disulfide oxidoreductase that has a direct role in the maintenance of normal cytosolic and mitochondrial iron homoeostasis, and its expression affects haem biosynthesis and erythropoiesis. We have crystallized the human GLRX5 bound to two [2Fe-2S] clusters and four GSH molecules. The crystal structure revealed a tetrameric organization with the [2Fe-2S] clusters buried in the interior and shielded from the solvent by the conserved ß1-α2 loop, Phe69 and the GSH molecules. Each [2Fe-2S] cluster is ligated by the N-terminal activesite cysteine (Cys67) thiols contributed by two protomers and two cysteine thiols from two GSH. The two subunits co-ordinating the cluster are in a more extended conformation compared with iron-sulfur-bound human GLRX2, and the intersubunit interactions are more extensive and involve conserved residues among monothiol GLRXs. Gel-filtration chromatography and analytical ultracentrifugation support a tetrameric organization of holo-GLRX5, whereas the apoprotein is monomeric. MS analyses revealed glutathionylation of the cysteine residues in the absence of the [2Fe-2S] cluster, which would protect them from further oxidation and possibly facilitate cluster transfer/acceptance. Apo-GLRX5 reduced glutathione mixed disulfides with a rate 100 times lower than did GLRX2 and was active as a glutathione-dependent electron donor for mammalian ribonucleotide reductase.


Assuntos
Glutarredoxinas/química , Proteínas Ferro-Enxofre/química , Multimerização Proteica , Cristalografia por Raios X , Dissulfetos/química , Dissulfetos/metabolismo , Glutarredoxinas/metabolismo , Humanos , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica , Estrutura Quaternária de Proteína
6.
J Biol Chem ; 284(29): 19402-11, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19478087

RESUMO

"Regulator of G-protein signaling" (RGS) proteins facilitate the termination of G protein-coupled receptor (GPCR) signaling via their ability to increase the intrinsic GTP hydrolysis rate of Galpha subunits (known as GTPase-accelerating protein or "GAP" activity). RGS2 is unique in its in vitro potency and selectivity as a GAP for Galpha(q) subunits. As many vasoconstrictive hormones signal via G(q) heterotrimer-coupled receptors, it is perhaps not surprising that RGS2-deficient mice exhibit constitutive hypertension. However, to date the particular structural features within RGS2 determining its selectivity for Galpha(q) over Galpha(i/o) substrates have not been completely characterized. Here, we examine a trio of point mutations to RGS2 that elicits Galpha(i)-directed binding and GAP activities without perturbing its association with Galpha(q). Using x-ray crystallography, we determined a model of the triple mutant RGS2 in complex with a transition state mimetic form of Galpha(i) at 2.8-A resolution. Structural comparison with unliganded, wild type RGS2 and of other RGS domain/Galpha complexes highlighted the roles of these residues in wild type RGS2 that weaken Galpha(i) subunit association. Moreover, these three amino acids are seen to be evolutionarily conserved among organisms with modern cardiovascular systems, suggesting that RGS2 arose from the R4-subfamily of RGS proteins to have specialized activity as a potent and selective Galpha(q) GAP that modulates cardiovascular function.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas RGS/metabolismo , Sítios de Ligação/genética , Linhagem Celular , Evolução Molecular , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas RGS/química , Proteínas RGS/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ressonância de Plasmônio de Superfície , Transfecção
7.
Carbohydr Res ; 344(7): 869-80, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19328460

RESUMO

This study reports syntheses of d-allose 6-phosphate (All6P), D-allulose (or D-psicose) 6-phosphate (Allu6P), and seven D-ribose 5-phosphate isomerase (Rpi) inhibitors. The inhibitors were designed as analogues of the 6-carbon high-energy intermediate postulated for the All6P to Allu6P isomerization reaction (Allpi activity) catalyzed by type B Rpi from Escherichiacoli (EcRpiB). 5-Phospho-D-ribonate, easily obtained through oxidative cleavage of either All6P or Allu6P, led to the original synthon 5-dihydrogenophospho-D-ribono-1,4-lactone from which the other inhibitors could be synthesized through nucleophilic addition in one step. Kinetic evaluation on Allpi activity of EcRpiB shows that two of these compounds, 5-phospho-D-ribonohydroxamic acid and N-(5-phospho-D-ribonoyl)-methylamine, indeed behave as new efficient inhibitors of EcRpiB; further, 5-phospho-D-ribonohydroxamic acid was demonstrated to have competitive inhibition. Kinetic evaluation on Rpi activity of both EcRpiB and RpiB from Mycobacterium tuberculosis (MtRpiB) shows that several of the designed 6-carbon high-energy intermediate analogues are new competitive inhibitors of both RpiBs. One of them, 5-phospho-D-ribonate, not only appears as the strongest competitive inhibitor of a Rpi ever reported in the literature, with a K(i) value of 9 microM for MtRpiB, but also displays specific inhibition of MtRpiB versus EcRpiB.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Fosfatos Açúcares/química , Aldose-Cetose Isomerases/química , Domínio Catalítico , Inibidores Enzimáticos/química , Ácidos Hidroxâmicos/química , Cinética , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Estrutura Secundária de Proteína
8.
J Mol Biol ; 382(3): 667-79, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18640127

RESUMO

Interconversion of D-ribose-5-phosphate (R5P) and D-ribulose-5-phosphate is an important step in the pentose phosphate pathway. Two unrelated enzymes with R5P isomerase activity were first identified in Escherichia coli, RpiA and RpiB. In this organism, the essential 5-carbon sugars were thought to be processed by RpiA, while the primary role of RpiB was suggested to instead be interconversion of the rare 6-carbon sugars D-allose-6-phosphate (All6P) and D-allulose-6-phosphate. In Mycobacterium tuberculosis, where only an RpiB is found, the 5-carbon sugars are believed to be the enzyme's primary substrates. Here, we present kinetic studies examining the All6P isomerase activity of the RpiBs from these two organisms and show that only the E. coli enzyme can catalyze the reaction efficiently. All6P instead acts as an inhibitor of the M. tuberculosis enzyme in its action on R5P. X-ray studies of the M. tuberculosis enzyme co-crystallized with All6P and 5-deoxy-5-phospho-D-ribonohydroxamate (an inhibitor designed to mimic the 6-carbon sugar) and comparison with the E. coli enzyme's structure allowed us to identify differences in the active sites that explain the kinetic results. Two other structures, that of a mutant E. coli RpiB in which histidine 99 was changed to asparagine and that of wild-type M. tuberculosis enzyme, both co-crystallized with the substrate ribose-5-phosphate, shed additional light on the reaction mechanism of RpiBs generally.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Glucose/metabolismo , Mycobacterium tuberculosis/enzimologia , Ribosemonofosfatos/metabolismo , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Glucose/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Conformação Proteica , Ribosemonofosfatos/química
9.
J Pept Sci ; 13(12): 822-32, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17918768

RESUMO

Mycobacterium tuberculosis ribonucleotide reductase (RNR) is a potential target for new antitubercular drugs. Herein we describe the synthesis and evaluation of peptide inhibitors of RNR derived from the C-terminus of the small subunit of M. tuberculosis RNR. An N-terminal truncation, an alanine scan and a novel statistical molecular design (SMD) approach based on the heptapeptide Ac-Glu-Asp-Asp-Asp-Trp-Asp-Phe-OH were applied in this study. The alanine scan showed that Trp5 and Phe7 were important for inhibitory potency. A quantitative structure relationship (QSAR) model was developed based on the synthesized peptides which showed that a negative charge in positions 2, 3, and 6 is beneficial for inhibitory potency. Finally, in position 5 the model coefficients indicate that there is room for a larger side chain, as compared to Trp5.


Assuntos
Antituberculosos , Inibidores Enzimáticos , Mycobacterium tuberculosis/enzimologia , Peptídeos , Ribonucleotídeo Redutases/antagonistas & inibidores , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacologia , Clonagem Molecular , Técnicas de Química Combinatória/métodos , Desenho de Fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Conformação Molecular , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Reação em Cadeia da Polimerase/métodos , Relação Quantitativa Estrutura-Atividade , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/isolamento & purificação , Estereoisomerismo
10.
J Biol Chem ; 280(8): 6416-22, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15590681

RESUMO

Ribose-5-phosphate isomerase (Rpi), an important enzyme in the pentose phosphate pathway, catalyzes the interconversion of ribulose 5-phosphate and ribose 5-phosphate. Two unrelated isomerases have been identified, RpiA and RpiB, with different structures and active site residues. The reaction catalyzed by both enzymes is thought to proceed via a high energy enediolate intermediate, by analogy to other carbohydrate isomerases. Here we present studies of RpiB from Mycobacterium tuberculosis together with small molecules designed to resemble the enediolate intermediate. The relative affinities of these inhibitors for RpiB have a different pattern than that observed previously for the RpiA from spinach. X-ray structures of RpiB in complex with the inhibitors 4-phospho-d-erythronohydroxamic acid (K(m) 57 microm) and 4-phospho-d-erythronate (K(i) 1.7 mm) refined to resolutions of 2.1 and 2.2 A, respectively, allowed us to assign roles for most active site residues. These results, combined with docking of the substrates in the position of the most effective inhibitor, now allow us to outline the reaction mechanism for RpiBs. Both enzymes have residues that can catalyze opening of the furanose ring of the ribose 5-phosphate and so can improve the efficiency of the reaction. Both enzymes also have an acidic residue that acts as a base in the isomerization step. A lysine residue in RpiAs provides for more efficient stabilization of the intermediate than the corresponding uncharged groups of RpiBs; this same feature lies behind the more efficient binding of RpiA to 4-phospho-d-erythronate.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimologia , Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/química , Ligação Competitiva , Catálise , Cristalografia por Raios X , Cinética , Modelos Moleculares , Ligação Proteica , Açúcares Ácidos
11.
J Mol Biol ; 335(3): 799-809, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14687575

RESUMO

Ribose-5-phosphate isomerases (EC 5.3.1.6) inter-convert ribose-5-phosphate and ribulose-5-phosphate. This reaction allows the synthesis of ribose from other sugars, as well a means for salvage of carbohydrates after nucleotide breakdown. Two unrelated types of enzyme are known to catalyze the isomerization. The most common one, RpiA, is present in almost all organisms. The second type, RpiB, is found in many bacterial species.Here, we demonstrate that the RpiB from Mycobacterium tuberculosis (Rv2465c) has catalytic properties very similar to those previously reported for the Escherichia coli RpiB enzyme. Further, we report the structure of the mycobacterial enzyme, solved by molecular replacement and refined to 1.88A resolution. Comparison with the E.coli structure shows that there are important differences in the two active sites, including a change in the position and nature of the catalytic base. Sequence comparisons reveal that the M.tuberculosis and E.coli RpiB enzymes are in fact representative of two distinct sub-families. The mycobacterial enzyme represents a type found only in actinobacteria, while the enzyme from E.coli is typical of that seen in many other bacterial proteomes. Both RpiBs are very different from RpiA in structure as well as in the construction of the active site. Docking studies allow additional insights into the reactions of all three enzymes, and show that many features of the mechanism are preserved despite the different catalytic components.


Assuntos
Aldose-Cetose Isomerases/química , Mycobacterium tuberculosis/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...